Chemistry of Ethyl 2-\{[t-Butoxycarbonyl(methyl)amino]methyl\}-3-hydroxy-3phenyl (or 3-vinyl)propionate: Mechanistic Considerations in the Formation of Tetrahydro-1,3-oxazin-2-ones

Takushi Kurihara,* Yoshitaka Matsubara, Shinya Harusawa and Ryuji Yoneda Osaka University of Pharmaceutical Sciences, 2-10-65 Kawai, Matsubara, Osaka 580, Japan

Abstract

The threo- and erythro-selective aldol condensation of ethyl 3-[t-butoxycarbonyl(methyl)amino]propionate with benzaldehyde gave the benzylic alcohol-substituted aminopropionate ethyl 2-\{[t-butoxycarbonyl(methyl)amino]methyl\}-3-hydroxy-3-phenylpropionate as a diastereoisomeric mixture. On treatment with methanesulphonyl chloride and triethylamine, the threo-isomer was converted into ethyl 3-methyl-2-oxo-6-phenyl-3,4,5,6-tetrahydro-2H-1,3-oxazine-5-carboxylate, and the erythro-isomer gave simply its corresponding mesate derivative. The mechanism for this transformation is discussed.

Our previous paper reported ${ }^{1}$ the formal total synthesis of (\pm) lysergic acid via the mesate 2 as the key compound, by treatment of the allyl alcohol 1 with methanesulphonyl chloride and triethylamine. In this reaction, however, the tetrahydro-1,3-oxazin-2-one derivative 3 , which caused a significant decrease in the yield of compound 2, was isolated as a by-product in ca. 30\% yield (Scheme 1). This paper presents in detail the mechanism for this side-reaction by using a simple model compound. ${ }^{2}$

Scheme 1 Reagents: i, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$. Abbreviations: Boc, tert-butoxycarbonyl; Ms. methylsulphonyl

Results and Discussion

The aldol condensation of ethyl 3-[t-butoxycarbonyl(methyl)amino]propionate 4 with benzaldehyde 5 a in the presence of lithium diisopropylamide (LDA) in tetrahydrofuran (THF) at -78 C gave the benzylic alcohol $6 a$ in quantitative yield. ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the product $6 a$ to be an inseparable mixture of diastereoisomers in the ratio 45:55 (based on N -methyl signals). Treatment of this mixture with $\mathrm{MsCl}(1.5 \mathrm{~mol}$ equiv.) in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in methylene dichloride at room temperature for 20 min gave the tetrahydro-1,3-oxazin-2-one $7 \mathbf{a} \dagger(36 \%)$ and mesate $\mathbf{8 a}(47 \%)$, following purification by SiO_{2} column chromatography. trans-Stereochemistry of the former product, having a stable 5,6 -diequatorial configuration, was deduced from the coupling constant $(J 7.8 \mathrm{~Hz})$ of $6-\mathrm{H}(\delta 5.45$, d) in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{3}$ threo-Selective ${ }^{4}$ and erythroselective ${ }^{5}$ aldol condensations of diester 4 with benzaldehyde

[^0]5a, followed by mesylation of the resulting alcohol 6a, gave a mixture of compounds $7 \mathbf{a}$ and $\mathbf{8 a}$, whose product ratios are indicated in Table 1. The threo-selective condensation product (threo/erythro 79/21) was clearly shown to yield the 1,3-oxazin-2-one 7a predominantly, whereas mesate $8 \mathbf{8}$ was the major component from the erythro-selective condensation product (threo/erythro 26/74). It is significant that the diastereoisomeric ratio was virtually the same as that of the products. Isolated mesate 8a was not converted into the oxazinone 7a under the same conditions of mesylation. \ddagger threo- $\mathbf{6 a}$ Alone is converted into the 1,3 -oxazin- 2 -one 7 a , possibly via the mesyl intermediate, while erythro-6a is converted into the corresponding mesate $\mathbf{8 a}$ by treatment of compound $6 \mathbf{a}$ with $\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}$. Assignment of the stereochemistry of the alcohols threo-6a and erythro-6a was made as follows: reduction of the threo-selective condensation product with lithium borohydride-methanol ${ }^{6}$ in diethyl ether to give diols which were subsequently separated by SiO_{2} column chromatography afforded diols $9(67 \%)$ and $10(18 \%)$. Treatment of either diol $\mathbf{9}$ or 10 with 2,2-dimethoxypropane in the presence of toluene-p-sulphonic acid (TsOH) gave the corresponding 1,3-dioxane derivative 11 or 12 (Scheme 2). Coupling constants of the ring methine protons in compound $11\left(J_{4.5}\right)$ had a value (12 Hz) exceeding that (3 Hz) for the corresponding protons of its isomer 12. The major component of aldol condensation product $\mathbf{6 a}$ is thus shown to be the threoisomer and the minor one to be the erythro-one.

We then turned our attention to the reason why compound $7 \mathbf{a}$ is obtained from the threo- $6 \mathbf{a}$ alcohol only. A possible explanation is as follows: Fig. 1 shows the most stable of the three possible conformers of the threo- and erythro-mesate $\mathbf{8 a}$. Electrostatic repulsion between the mesyloxy and ethoxycarbonyl groups in the threo-isomer should accelerate elimination of the mesyloxy group to give the tetrahydro-1,3-oxazin-2-one $7 \mathbf{7 a}$.

On the other hand, effects of substitition on the benzene ring could be detected in the reaction of alcohols $6 \mathbf{b}-6 \mathbf{f}$ with $\mathrm{MsCl}-$ $E t_{3} \mathrm{~N}$, as shown in Table 2. That is, electron-donating groups in the compounds 6 caused the exclusive formation of 1,3-oxazine-2-ones $\mathbf{7 b - d}$ in high yields, whereas electron-withdrawing groups such as nitro resulted in the predominant formation of mesate $\mathbf{8 f}$, which was shown to be a mixture of threo and erythro isomers by its ${ }^{1} \mathrm{H}$ NMR spectrum. Similarly, treatment of allyl alcohols 16 and 19, obtained by condensation of diester 4 with α, β-unsaturated aldehydes 13 and 14 , with $\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}$ gave a mixture of 1,3 -oxazin-2-ones 17,20 and mesates $18,21$. However, saturated alcohol 22 prepared from cyclohexanecarbaldehyde 15 did not give any cyclised product under the same conditions (Table 2). These results strongly indicated that the

Table 1 Reagents: i, LDA; ii, LDA, TMSCl, TiCl_{4}; iii, $\mathrm{LDA}, \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$; iv, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$

PhCHO

Scheme 2 Reagents: i, LDA, TMSCl, TiCl_{4}; ii, $\mathrm{LiBH}_{4}-\mathrm{MeOH}$; iii, $\mathrm{MeCH}(\mathrm{OMe})_{2} \mathrm{Me}, \mathrm{TsOH}$

threo

erythro

Fig. 1 Newman projections of threo- and erythro-mesates 8a
stability of the carbocation that may be generated by elimination of a mesyloxy group may also be a fundamental factor in the preferential formation of 1,3-oxazin-2-ones (Scheme 3). The benzylic or allylic mesates must therefore be formed in order to give the corresponding 1,3-oxazin-2-one. It therefore follows that the mechanism of 1,3-oxazin-2-one formation from benzylic or allylic mesates may be as follows: elimination of the mesyloxy anion promoted by electrostatic repulsion and/or presence of electron-donating groups on the benzene ring as mentioned above leads to the formation of the
stabilised benzylic or allylic carbocations. Abstraction of a proton from the t-butyl group by the mesyloxy anion, with subsequent liberation of isobutene followed by cyclisation of the N-carboxylate anion thus produced, gives the corresponding 1,3-oxazin-2-one via an $S_{\mathrm{N}} 1$ process.

Previously, Kano et al. ${ }^{7}$ reported a simple diastereoselective conversion of chiral N-benzyloxycarbonyl 1,2-amino alcohols by treatment of thionyl dichloride at $60^{\circ} \mathrm{C}$, followed by ring cleavage of the resulting oxazolidin-2-ones, of which cyclocarbamation was thought to proceed through $S_{\mathrm{N}} 2$-type $\mathrm{C}-\mathrm{O}$ bond formation. 1,3-Oxazin-2-one formation was found to occur in one case apparently via an $S_{\mathrm{N}} 2$ process. Condensation of acrylaldehyde 13 with ethyl 3-[t-butoxycarbonyl(methyl)-amino]-2-methylpropionate 24 under the same conditions as for the preparation of compound 6a gave threo-alcohol $\mathbf{2 5}$ and erythro-alcohol 26 in 47 and 40% yield, respectively. These could be separated by SiO_{2} column chromatography. Determination of threo and erythro stereochemistry for compounds 25 and 26 were conducted by the same method as that used in the determination of compound $6 a$ by which 1,3dioxanes 27 and 28 were obtained. The nuclear Overhauser

Table 2 Reagents: i, 4, LDA; ii, $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$
(30)
${ }^{a}$ Isolated yield by column chromatography. ${ }^{b}$ This was a mixture of threo and erythro isomers prior to purification by recrystallisation. ${ }^{\text {c }}$ This was a mixture of threo and erythro isomers. ${ }^{d}$ Starting material 22 was recovered in 20% yield.

Scheme 3
effect (NOE) between $5-\mathrm{Me}$ and $4-\mathrm{H}$ was thereby shown to be stronger in compound 28 than in compound 27. The usual treatment of compounds 25 and 26 with $\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}$ gave the 1,3-oxazin-2-one 29 as a single product in 83% yield from the former, and the mesate 30 in 79% yield from the latter, as an oil. However, the mesate $\mathbf{3 0}$ was surprisingly transformed into the 1,3-oxazin-2-one 31 as a single product by just being kept at room temperature for a few days, presumably because of the presence of a quaternary centre in a position adjacent to a mesyloxy group. The transformation of compound $\mathbf{3 0}$ presumably proceeds via the $S_{\mathrm{N}} 1$ process to give the more stable isomer 31 (Scheme 4). The cis-stereochemistry between $5-\mathrm{Me}$ and $6-\mathrm{H}$ of compound 31 was clarified based on the NOE enhancement. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 29 was virtually the same as that of its diastereoisomer 31, though there was no NOE enhancement between $5-\mathrm{Me}$ and $6-\mathrm{H}$; compound 29 is therefore shown to have trans-stereochemistry. Though details have yet to be clarified, the transformation of the alcohol $\mathbf{2 5}$ via its mesate intermediate into the trans oxazine isomer 29, should be explainable as being due to the $S_{\mathrm{N}} 2$ process.

24

Scheme 4 Reagents: i. LDA; ii, $\mathrm{MsCl} . \mathrm{Et}_{3} \mathrm{~N}$; iii, LiBH_{4} : iv, $\mathrm{MeCH}-$ $(\mathrm{OMe})_{2} \mathrm{Me}, \mathrm{TsOH}$

Experimental

IR spectra were recorded on a Shimadzu IR-435 spectrophotometer. ${ }^{1}$ H NMR spectra were determined with a Varian Gemini200 spectrometer (tetramethylsilane as internal standard), and mass spectra with a Hitachi M-80 instrument. The solvent for extraction was a mixture of benzene-EtOAc (1:1), unless otherwise stated, and was dried over anhydrous sodium sulphate. For column chromatography, SiO_{2} (Merck, Art 9385) was used. Light petroleum refers to the fraction boiling in the range $30-60{ }^{\circ} \mathrm{C}$.

Ethyl 2-\{[t-Butoxycarbonyl(methyl)amino]methyl\}-3-hydr-oxy-3-phenylpropionate 6a.-Method A. A solution of compound $4(2.08 \mathrm{~g}, 9 \mathrm{mmol})$ in $\operatorname{THF}\left(5 \mathrm{~cm}^{3}\right)$ was added to a solution of LDA [prepared from diisopropylamine $\left(1.4 \mathrm{~cm}^{3}, 10\right.$ mmol) and $\mathrm{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ hexane solution; $6.4 \mathrm{~cm}^{3}, 10$ mmol)] in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for 20 min . A solution of benzaldehyde $5 \mathbf{5}(1.06 \mathrm{~g}, 10$ mmol) in THF ($5 \mathrm{~cm}^{3}$) was added dropwise to the mixture at -78 C , and the whole was stirred for 10 min . The reaction was quenched by the addition of water, and THF was removed by evaporation. The residue was extracted, and the extract was
washed successively with water and brine, dried, and evaporated. The residue was purified by column chromatography [benzene-EtOAc (5:1)] to give compound $\mathbf{6 a}(3.0 \mathrm{~g}, 99 \%)$ as an oil, $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3420(\mathrm{OH}), 1730$ and $1690(\mathrm{CO})$. The ${ }^{1} \mathrm{H}$ NMR spectrum was not sufficiently well resolved for assignment of the signals. Selected ${ }^{1} \mathrm{H}$ NMR spectral data are as follows: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.12\left(3 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.44(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Bu}^{\mathrm{t}}, 2.75$ and 2.84 (ratio $55: 45$) (3 H , each s, NMe), $3.0-3.50$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}$), 4.75-4.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$) and $7.34(5 \mathrm{H}$, s, ArH) (Found: $\mathrm{M}^{+}, 337.1886 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires M , 337.1890).

Method B. A solution of compound $4(693 \mathrm{mg}, 3 \mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$) was added to a solution of LDA [prepared from diisopropylamine ($0.5 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}$) and $\mathrm{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ hexane solution; $\left.\left.2.2 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}\right)\right]$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for 20 min . A solution of chlorotrimethylsilane (TMSCl) $\left(0.47 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}\right)$ in THF (4 cm^{3}) was added dropwise to the mixture at $-78^{\circ} \mathrm{C}$, and the whole was stirred for 30 min , then for an additional 30 min at room temperature. The reaction was quenched by the addition of water. and THF was removed by evaporation. The residue was extracted with light petroleum and the extract was washed successively with water and brine, dried, and evaporated to give a crude silyl enol ether as an oil. A solution of titanium tetrachloride ($0.33 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) in methylene dichloride (6 cm^{3}), cooled to $-78^{\circ} \mathrm{C}$, was added to a solution of benzaldehyde $5 \mathbf{a}$ ($223 \mathrm{mg}, 2.1 \mathrm{mmol}$) in methylene dichloride (15 cm^{3}) at such a rate that the temperature of the reaction mixture remained between -70 and $-75^{\circ} \mathrm{C}$. After the mixture had been stirred for 15 min , a solution of the silyl enol ether obtained above in methylene dichloride $\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise to the mixture at this temperature, and the whole was stirred for 2.5 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of 5% aq. potassium carbonate ($25 \mathrm{~cm}^{3}$), then diluted with chloroform ($30 \mathrm{~cm}^{3}$). The insoluble material was removed by filtration, and the filtrate was washed successively with water and brine, dried, and evaporated. The residue was purified by column chromatography [benzene-EtOAc (5:1)] to give a threo-predominant product $\mathbf{6 a}(440 \mathrm{mg}, 62 \%$) as an oil, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed the NMe signals at $\delta 2.75$ and 2.84 with the ratio erythro:threo 21:79 (Found: $\mathbf{M}^{+}, 337.1882$).

Method C. A solution of compound $4(693 \mathrm{mg}, 3 \mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$) was added to a solution of LDA [prepared from diisopropylamine ($0.46 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}$) and $\mathrm{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ hexane solution; $\left.2.1 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}\right)$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for 30 min . A solution of bis(cyclopentadienyl)zirconium dichloride ($\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$) $(964 \mathrm{mg}$, $3.3 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was then added at such a rate that the temperature of the reaction mixture remained between - 70 and $-75^{\circ} \mathrm{C}$, followed by a solution of benzaldehyde 5 a (223 $\mathrm{mg}, 2.1 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$, and the whole was stirred for 2 h at $-78^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of saturated aq. ammonium chloride ($3 \mathrm{~cm}^{3}$), and was then stirred for 30 min at room temperature, then extracted. The extract was washed successively with water and brine, dried, and evaporated. The residue was purified by column chromatography [benzene-EtOAc (5:1)] to give an erythro-predominant product $6 \mathrm{a}\left(634 \mathrm{mg}, 90 \%\right.$) as an oil, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed the NMe signals at $\delta 2.75$ and 2.84 with the ratio erythro: threo ($74: 26$) (Found: $\mathbf{M}^{+}, 337.1888$).
threo- and erythro-t-Butyl $\mathrm{N}-[3-H y d r o x y-2-(h y d r o x y m e t h y l)-$ 3-phenyl]-N-methylcarbamate 9 and 10 .-To an ice-cooled solution of threo-predominant diester $\mathbf{6 a}(309 \mathrm{mg}, 0.92 \mathrm{mmol})$, prepared by Method B, in diethyl ether $\left(6 \mathrm{~cm}^{3}\right)$ containing methanol ($88 \mathrm{mg}, 2.67 \mathrm{mmol}$) was added LiBH_{4} ($58 \mathrm{mg}, 2.76$ mmol), and the mixture was refluxed for 2 h , quenched by the addition of water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted. The extract was
washed successively with water and brine, dried, and evaporated. The residue was chromatographed [benzene-EtOAc ($3: 1$)] to give compound $9(182 \mathrm{mg}, 67 \%)$ from the first fraction and compound $10(48 \mathrm{mg}, 18 \%)$ from the second fraction.

Compound 9 was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350(\mathrm{OH})$ and 1660 $(\mathrm{CO}): \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{C}_{2} \mathrm{OH}\right)$, 2.70 ($3 \mathrm{H} . \mathrm{s}, \mathrm{NMe}$), 2.80 (1 H , dd, $J 14.0$ and $4.0, \mathrm{CH} \mathrm{HNBoc}$), 3.54 and 3.78 (each 1 H , each d, $J 12.0, \mathrm{CH}_{2} \mathrm{OH}$), 3.94 and 4.44 (each 1 H , each br s, $2 \times \mathrm{OH}), 4.04(1 \mathrm{H}$, dd, $J 14.0$ and 12.0 , $\mathrm{CH} H \mathrm{NBoc}), 5.08(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{ArCH})$ and $7.20-7.40(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; m /=296\left(\mathrm{M}^{+}+1\right)$ [Found: $(\mathrm{M}+1) 296.1862$. $\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{NO}_{4}$ requires $\left.m / z 296.1862\right]$.

Compound 10 was an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and 1660 $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OH}\right)$, $2.88(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.27(1 \mathrm{H}, \mathrm{dd}, J 15.0$ and $7.0, \mathrm{C} H \mathrm{NBoc}), 3.42$ and 3.71 (each 1 H , each dd, $J 12.0$ and $\left.7.0, \mathrm{CH}_{2} \mathrm{OH}\right), 3.83(1 \mathrm{H}$, dd, $J 15.0$ and 10.0, $\mathrm{CH} H$ NBoc), $3.95\left(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{OH}\right)$, 4.93 ($1 \mathrm{H} . \mathrm{d}, J 6.0$, ArCHOH), $4.81(1 \mathrm{H}$, dd, $J 6.0$ and 5.0 , $\mathrm{ArCH})$ and $7.20-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (Found: $\mathrm{M}^{+}, 295.1786$. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires $\mathrm{M}, 295.1785$).
trans-t-Butyl N-[(2,2-Dimethyl-4-phenyl-1,3-dioxan-5-yl)-methyl]-N-methylcarbamate 11.-A solution of compound 9 ($65 \mathrm{mg}, 0.22 \mathrm{mmol}$) and 2,2-dimethoxypropane ($1.64 \mathrm{~cm}^{3}, 13.2$ mmol) in the presence of $\mathrm{TsOH}(42 \mathrm{mg}, 0.22 \mathrm{mmol})$ in diemthylformamide (DMF) ($3 \mathrm{~cm}^{3}$) was stirred at room temperature for 2 h . After the reaction mixture had been quenched by the addition of 2% aq. potassium carbonate (10 cm^{3}), it was extracted with EtOAc. The extract was washed with water, dried, and evaporated. The residue was purified by column chromatography [benzene-EtOAc (10:1)] to give compound $11\left(58 \mathrm{mg}, 79 \%\right.$) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1690(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.48$ and 1.55 (each 3 H , each s, $2 \times \mathrm{Me}), 2.05-2.56(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ NBoc and $5-\mathrm{H}), 2.58(3 \mathrm{H}, \mathrm{s}$, NMe), $3.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H\right.$ NBoc), $3.88\left(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{OCH}_{2}\right), 4.53$ ($1 \mathrm{H}, \mathrm{d}, J 12.0 .4-\mathrm{H}$) and $7.25-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (Found: M^{+}, 335.2094. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires $\mathrm{M}, 335.2098$).
cis-t-Butyl N-[(2,2-Dimethyl-4-phenyl-1,3-dioxan-5-yl)meth-$y]$-N-methy/carbamate 12.-A solution of compound 10 (145 $\mathrm{mg}, 0.5 \mathrm{mmol}$) was treated with 2,2-dimethox ypropane ($3.7 \mathrm{~cm}^{3}$, 30 mmol), as described for the preparation of compound 11 , to give compound $12(128 \mathrm{mg}, 76 \%)$ as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1675$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.54$ and 1.55 (each 3 H , each s, $2 \times \mathrm{Me}$), $1.98(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.72(4 \mathrm{H}$, br s, NMe and C H NBoc), $3.49(1 \mathrm{H}$, br t, $J 12.0, \mathrm{CH}$ NBoc), 3.85 and 4.16 (each 1 H , each d, $\left.J 12.0, \mathrm{OCH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{d}, J 2.6,4-\mathrm{H})$ and $7.16-$ 7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) (Found: $\mathrm{M}^{+}, 335.2096$).

General Procedure for the Preparation of Benzylic and Allylic

 Alcohols 6b-f. 16, 19 and 22.-By a similar procedure (Method A) to that described for the preparation of compound $\mathbf{6 a}$, the crude product which was obtained from aldehydes 5b-f, 13, 14 and 15 and diester 4 was purified by column chromatography [benzene-EtOAc (5:1)] to give a benzylic or allylic alcohols, which were inseparable mixtures of diastereoisomers. The ${ }^{1} \mathrm{H}$ NMR spectra of these compounds were not sufficiently well resolved for assignment of the total signals.Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-h y d r-$ oxy-3-(4-methylphenyl)propionate 6b was an oil $(92 \%), v_{\text {max }}-$ (neat) $/ \mathrm{cm}^{-1} 3420(\mathrm{OH}), 1720$ and $1680(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.38\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 2.45(3 \mathrm{H}$, s , Me), 2.73 and 2.78 (total 3 H , each s, NMe), $4.07(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $4.65-4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$ and $7.15-7.30(4 \mathrm{H}$, m, ArH) (Found: $\mathrm{M}^{+}, 351.2046 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{5}$ requires M , 351.2044).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino]methyl $\}-3$-hydr-oxy-3-(4-methoxyphenyl)propionate $\mathbf{6 c}$ was an oil $(91 \%), v_{\max }-$
(neat) $/ \mathrm{cm}^{-1} 3420(\mathrm{OH}), 1725$ and $1690(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} M e\right), 1.37\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.71(3 \mathrm{H}$, s , NMe), 3.73 and 3.75 (total 3 H , each s, OMe), $4.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $4.65-4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 6.80(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (Found: $\mathrm{M}^{+}, 367.1994 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{6}$ requires $\mathrm{M}, 367.1996)$.

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-h y d r-$ oxy-3-(3,4-methylenedioxyphenyl)propionate $6 \mathbf{d}$ was an oil $(97 \%), v_{\max }($ neat $) / \mathrm{cm}^{-1} 3420(\mathrm{OH}), 1725$ and $1690(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.35(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{t}\right), 2.72(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 4.65-4.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.85$ and 5.87 (total 2 H , each s, $\mathrm{OCH}_{2} \mathrm{O}$) and $6.68-6.85(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ (Found: $\mathrm{M}^{+}, 381.1785 . \mathrm{C}_{19} \mathrm{H}_{2}{ }_{7} \mathrm{NO}_{7}$ requires $\mathrm{M}, 381.1788$).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino]methyl\}-3-(4-chlorophenyl)-3-hydroxypropionate 6 e was an oil (100%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3420(\mathrm{OH}), 1720$ and $1680(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.13\left(3 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.75$ and 2.85 (total 3 H , each s, NMe), 3.10-3.50 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{~N}$) 4.04 (2 $\left.\mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.60-4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$ and $7.30(4 \mathrm{H}$, m, ArH) (Found: $\mathrm{M}^{+}, 372.1578 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{ClNO}_{5}$ requires M , 372.1576).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-h y d r-$ oxy-3-(4-nitrophenyl)propionate 6 f was an oil $(97 \%), v_{\text {max }}-$ (neat) $/ \mathrm{cm}^{-1} 3420(\mathrm{OH}), 1730$ and $1690(\mathrm{CO}), 1545$ and 1380 $\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.09\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} M e\right), 1.40(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), 2.71 and 2.85 (total 3 H , each s , NMe), $3.08(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCO}_{2} \mathrm{Et}\right), 3.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.80-5.10(1 \mathrm{H}, \mathrm{m}$, CHOH) and 7.50 and 8.15 (each 2 H , each m, ArH) (Found: $\mathrm{M}^{+}, 382.1738 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{M}, 382.1741$).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-h y d r-$ oxypent-4-enoate 16 was an oil (96%), $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3420$ $(\mathrm{OH}), 1725$ and $1680(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.20(3 \mathrm{H}, \mathrm{t}, J$ $7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.77$ and 2.81 (total 3 H , each s, NMe), $4.10\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.30-5.35(2 \mathrm{H}$, $\mathrm{m},=\mathrm{CH}_{2}$) and $5.70-5.92(1 \mathrm{H}, \mathrm{m},=\mathrm{CH})\left(\right.$ Found: $\mathrm{M}^{+}, 287.1731$. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{5}$ requires $\mathrm{M}, 287.1736$).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-(1,1-d i-$ methyl-1H-inden-3-yl)-3-hydroxypropionate 19 was an oil $(64 \%), v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 1730$ and $1690(\mathrm{CO}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.18\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.28$ and 1.30 (each 3 H , each s, $2 \times \mathrm{Me}$), $1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.74$ and 2.91 (total 3 H , each s, NMe), $4.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.82$ and 5.04 (total 1 H , each $\mathrm{m}, \mathrm{CHOH}$) and $6.29(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$ (Found: M^{+}, 403.2357. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{5}$ requires $\mathrm{M}, 403.2360$).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-$ cyclo-hexyl-3-hydroxypropionate 22 was an oil $(98 \%), v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3420(\mathrm{OH}), 1725$ and $1690(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.25(3 \mathrm{H}$, $\mathrm{t}, J 7.5, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.82$ and 2.88 (total 3 H , each $\mathrm{s}, \mathrm{NMe}), 3.0-3.4\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}{ }_{2} \mathrm{Et}\right), 3.5-3.7(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~N}$), and $4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$ (Found: M^{+}, 343.2356. $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{5}$ requires $\mathrm{M}, 343.2357$).

General Procedure for the Preparation of 1,3-Oxazines 7, 17 and 20 and Mesates 8, 18, 21 and 23.-To an ice-cooled solution of an alcohol $6,16,19$, or $22(3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(9$ mmol) in methylene dichloride ($10 \mathrm{~cm}^{3}$) was added $\mathrm{MsCl}(3.6$ mmol). After being stirred at room temperature for 10 min , the reaction mixture was quenched by the addition of cold water. The organic layer was washed with water, dried, and evaporated. The residue was chromatographed [benzene-EtOAc ($5: 1$)] to give the mesate from the first fraction and the 1,3oxazine from the latter fraction (see Tables 1 and 2).

Ethyl 3-Methyl-2-oxo-6-phenyl-3,4,5,6-tetrahydro-2H-1,3-ox-azine-5-carboxylate 7 a was an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720$ and $1705(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.06$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.15(1 \mathrm{H}$, ddd, $J 8.9,7.8$ and $5.2,5-\mathrm{H}), 3.38(1 \mathrm{H}$, dd, $J 11.5$ and $5.2,4-\mathrm{H}), 3.71(1 \mathrm{H}$, dd, $J 11.5$ and $8.9,4-\mathrm{H}), 4.03$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.45(1 \mathrm{H}, \mathrm{d}, J 7.8,6-\mathrm{H})$ and $7.35(5$
$\mathrm{H}, \mathrm{m}, \mathrm{ArH}$) (Found: M^{+}, 263.1155. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires M , 263.1158).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}$-3-meth-ylsulphonyloxy-3-phenylpropionate 8a had m.p. $73-75^{\circ} \mathrm{C}$ (from benzene-light petroleum); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1730$ and 1690 (CO), and 1365 and $1170\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 2.62(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.87[3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{S}(\mathrm{O})_{2} \mathrm{Me}\right], 3.38(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HNBoc})$, $3.82(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $4.3, \mathrm{CH} H \mathrm{NBoc}), 3.90(2 \mathrm{H}, \mathrm{q}, J$ 7.4, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $5.60\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CHOSO}_{2}\right)$ and $7.39(5$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 415\left(\mathrm{M}^{+}\right)$(Found: C, 54.9; H, 7.3; N, 3.4. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}$ requires C, $54.86 ; \mathrm{H}, 6.90 ; \mathrm{N}, 3.39 \%$).
Ethyl 3-methyl-6-(4-methylphenyl)-2-oxo-3,4,5,6-tetrahydro$2 \mathrm{H}-1,3$-oxazine-5-carboxylate 7 b had m.p. $69-71^{\circ} \mathrm{C}$ (from benzene-light petroleum); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720$ and 1700 (CO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.13(1 \mathrm{H}$, ddd, $J 8.8,8.5$, and $5.3,5-\mathrm{H}), 3.36$ (1 $\mathrm{H}, \mathrm{dd}, J 12.0$ and $5.3,4-\mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $8.8,4-\mathrm{H})$, $4.04\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.42(1 \mathrm{H}, \mathrm{d}, J 8.5,6-\mathrm{H}), 7.16$ (2 $\mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$ and $7.20(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}) ; m / z 277\left(\mathrm{M}^{+}\right)$ (Found: C, 65.0; H, 6.9; N, 5.05. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\mathrm{C}, 64.96$; H, 6.91; N, 5.05\%).
Ethyl 6-(4-methoxyphenyl)-3-methyl-2-oxo-3,4,5,6-tetrahy-dro-2 $\mathbf{H}-1,3$-oxazine-5-carboxylate $7 \mathbf{c}$ was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1720 and $1705(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2^{-}}\right.$ $M e), 3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.14(1 \mathrm{H}$, ddd, $J 10.0,9.0$ and $6.0,5-\mathrm{H}$), $3.39(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $6.0,4-\mathrm{H}$), $3.70(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and 10.0 , $4-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.03\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.36$ $(1 \mathrm{H}, \mathrm{d}, J 9.0,6-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$ and $7.26(2 \mathrm{H}, \mathrm{d}, J$ 8.5, ArH) (Found: M^{+}, 293.1262. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires M , 293.1264).

Ethyl 3-methyl-6-(3,4-methylenedioxyphenyl)-2-oxo-3,4,5,6-tetrahydro-2H-1,3-oxazine-5-carboxylate 7d had m.p. 104 $107^{\circ} \mathrm{C}$ (from benzene-light petroleum; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1720$ and $1705(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.10(1 \mathrm{H}$, ddd, $J 9.8,9.0$, and $6.0,5-\mathrm{H}$), 3.40 $(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $6.0,4-\mathrm{H}), 3.70(1 \mathrm{H}$, dd, $J 12.0$ and $9.8,4-\mathrm{H})$, $4.05\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.32(1 \mathrm{H}, \mathrm{d}, J 9.0,6-\mathrm{H}), 5.97(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.77(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; m / z$ $307\left(\mathrm{M}^{+}\right)$(Found: C, 58.6; H, 5.5; N, 4.6. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{6}$ requires C, $58.63 ; \mathrm{H}, 5.58 ; \mathrm{N}, 4.56 \%$).
Ethyl 6-(4-chlorophenyl)-3-methyl-2-oxo-3,4,5,6-tetrahydro$2 \mathrm{H}-1,3$-oxazine-5-carboxylate 7 e was an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1720 and $1700(\mathrm{CO}) ; \delta_{\mathrm{H}^{\prime}}\left(\mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{Me}$), 3.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.12 (1 H , ddd, $J 9.28 .6$, and $6.8,5-$ H), $3.39(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and $6.8,4-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and 9.2, $4-\mathrm{H}), 4.04\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.41(1 \mathrm{H}, \mathrm{d}, J 8.6$, $6-\mathrm{H}), 7.28(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$ and $7.36(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$ (Found: $\mathrm{M}^{+}, 297.0770 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{4}$ requires $\mathrm{M}, 297.0769$).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}-3-(4-$ chlorophenyl)-3-(methylsulphonyloxy)propionate 8 e had m.p. $75-77^{\circ} \mathrm{C}$ (from benzene-light petroleum); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 1725 and $1695(\mathrm{CO})$, and 1365 and $1170\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.03$ ($3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 2.71(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $2.85\left[3 \mathrm{H}, \mathrm{s}, \mathrm{S}(\mathrm{O})_{2} \mathrm{Me}\right], 3.34(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}), 3.64(1 \mathrm{H}, \mathrm{dd}, J$ 13.8 and $\left.9.9, \mathrm{CHH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $4.4, \mathrm{CH} H), 3.94$ ($2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH} \mathrm{C}_{2} \mathrm{Me}$), $5.62(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH})$ and $7.37(4 \mathrm{H}$, br s, ArH); m/z $449\left(\mathrm{M}^{+}\right)$(Found: C, $50.6 ; \mathrm{H}, 6.2 ; \mathrm{N}, 3.0$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClNO}_{7} \mathrm{~S}$ requires C, $50.72 ; \mathrm{H}, 6.27 ; \mathrm{N}, 3.11 \%$).

Ethyl 3-methyl-6-(4-nitrophenyl)-2-oxo-3,4,5,6-tetrahydro$2 \mathrm{H}-1,3$-oxazine-5-carboxylate 7 f was an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1730 and $1710(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2^{-}}\right.$ $\mathrm{CH}_{2} \mathrm{Me}$), 3.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.15(1 \mathrm{H}$, ddd, $J 9.4,9.0$, and 5.6 , $5-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $5.6,4-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $9.4,4-\mathrm{H}), 4.06\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.55(1 \mathrm{H}, \mathrm{d}, J 9.0,6-$ H), 7.56 ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}$) and $8.25(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}$) (Found: $\mathrm{M}^{+}, 308.1007 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{M}, 308.1009$).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}$-3-(meth-ylsulphonyloxy)-3-(4-nitrophenyl)propionate $\mathbf{8 f}$ had m.p. 116$119^{\circ} \mathrm{C}$ (from benzene-light petroleum); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1730$ and $1690(\mathrm{CO}), 1575$ and $1320\left(\mathrm{NO}_{2}\right)$, and 1365 and $1170\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\dagger}\right)$, 2.84 and 2.90 (each 3 H , each s, MeSO_{2} and NMe), $3.97(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.4, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.80\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOSO}_{2}\right), 7.62(2 \mathrm{H}, \mathrm{d}, J$ 7.8, ArH) and $8.25\left(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}\right.$); $m / z 460\left(\mathrm{M}^{+}\right)$(Found: C, 49.3; H, 6.0; N, 5.7. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ requires C, 49.56; H, 6.13; N , 6.08%).

Ethyl 3-methyl-2-oxo-6-vinyl-3,4,5,6-tetrahydro-2H-1,3-oxaz-ine-5-carboxylate 17 was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1730$ and 1700 $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.88(1 \mathrm{H}, \mathrm{td}$, $J 7.0$ and $5.2,5-\mathrm{H}), 3.0(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.41(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $5.2,4-\mathrm{H}), 3.63(1 \mathrm{H}$, dd, $J 12.0$ and $7.0,4-\mathrm{H}), 4.20(2 \mathrm{H}, \mathrm{q}, J 6.8$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.98(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $5.2,6-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{dd}, J$ 11.0 and $\left.1.2, \mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right),{ }^{*} 5.43(1 \mathrm{H}$, dd, $J 17.0$ and 1.2 , $\left.\mathrm{CH}=\mathrm{C} H^{\mathrm{I}} \mathrm{H}\right)$ and $5.86(1 \mathrm{H}$, ddd, $J 17.0,11.0$, and $5.2, \mathrm{CH}=)$ (Found: $\mathrm{M}^{+}, 213.100 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires M, 213.1002).
Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}$-3-(meth-ylsulphonyloxy)pent-4-enoate 18 was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1730 and $1690(\mathrm{CO})$, and 1365 and $1170\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.79(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.95$ [3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{S}(\mathrm{O})_{2} \mathrm{Me}\right], 3.0-3.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCO}\right.$ and $\left.\mathrm{NCH}_{2}\right), 4.10(2$ $\left.\mathrm{H}, \mathrm{q}, J 7.4, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.16\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOSO}_{2}\right), 5.35(1 \mathrm{H}, \mathrm{d}$, $\left.J 11.0, \mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{d}, J 17.4, \mathrm{CH}=\mathrm{CH}^{ } \mathrm{H}\right)$ and $5.90(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}=) ; m / z 366\left(\mathrm{M}^{+}+1\right)$ [Found: $\left(\mathrm{M}^{+}+1\right), 366.1580$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{7} \mathrm{~S}$ requires $\left.m / z, 366.1585\right]$.
Ethyl 6-(1,1-Dimethyl-1H-inden-3-yl)-3-methyl-2-oxo-3,4,5,6-tetrahydro- $2 \mathrm{H}-1,3$-oxazine-5-carboxylate 20 was an oil; $v_{\max }-$ (neat) $/ \mathrm{cm}^{-1} 1720$ and $1700(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.16(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.31(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 3.05(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.27$ (1 $\mathrm{H}, \mathrm{td}, J 6.0$ and $5.5,5-\mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $5.5,4-\mathrm{H}), 3.68$ ($1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $6.0,4-\mathrm{H}$), 4.13 ($2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $5.65(1 \mathrm{H}, \mathrm{br}$ d, $J 6.0,6-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{CH}=)$ and $7.20-7.36$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}\right.$) (Found: $\mathrm{M}^{+}, 329.1625 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires M , 329.1628).

Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $\}$-3-(1,1-dimethyl-1H-inden-3-yl)-3-(methylsulphonyloxy)propionate 21 was an oil, which was identical with an authentic sample by comparison of their IR and ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{8}$
Ethyl 2-\{[(t-butoxycarbonyl(methyl)amino $]$ methyl $]-3-$ cyclo-hexyl-3-(methylsulphonyloxy)propionate 23 was an oil; $v_{\max }{ }^{-}$ (neat) $/ \mathrm{cm}^{-1} 1725$ and $1680(\mathrm{CO})$, and 1370 and $1170\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ inter alia $1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.46 (9 $\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}$), 2.83, 2.84, 2.98, and 3.08 [total 6 H , each s, NMe and $\left.\mathrm{S}(\mathrm{O})_{2} \mathrm{Me}\right], 3.10-3.60\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right), 4.13$ and 4.15 (total 2 H , each q, $J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 4.67 and 4.75 (total 1 H , each m, CHOSO_{2}) (Found: $\mathrm{M}^{+}, 421.2130 . \mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{~S}$ requires M , 421.2132).
threo- and erythro-Ethyl 2-\{[(t-Butoxycarbonyl(methyl)amino] methyl $\}$-3-hydroxy-2-methylpent-4-enoates 25 and 26.By a similar procedure to that (Method A) described for the preparation of compound 6a, the crude product which was obtained from compound $24(2.20 \mathrm{~g}, 9 \mathrm{mmol})$ and 90% acrylaldehyde ($622 \mathrm{mg}, 10 \mathrm{mmol}$) in the presence of LDA (10 mmol) was chromatographed to give compound $26(1.04 \mathrm{~g}, 40 \%)$ from the first fraction and compound 25 ($1.23 \mathrm{~g}, 47 \%$) from the second fraction.

* Throughout this section, NMR data for the vinyl terminal hydrogens are given as follows:

Compound 25 was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1720$ and $1680(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.28(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 2.86$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.39-3.84 (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.08\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOSO}_{2}\right), 4.18(2 \mathrm{H}, \mathrm{q}, J 7.4$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $5.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right)$, $5.31(1 \mathrm{H}, \mathrm{d}, J 17.3$, $\left.\mathrm{CH}=\mathrm{C} H^{-} \mathrm{H}\right)$ and $5.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$ (Found: $\mathrm{M}^{+}, 301.1880$. $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires $\mathrm{M}, 301.1890$).

Compound 26 was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3420(\mathrm{OH}), 1720$ and $1680(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.29(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Mc}$), $1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.77(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.0$ and 3.90 (each 1 H , each d, $\left.J 15.0, \mathrm{CH}_{2}\right), 4.15\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$), $4.49(1 \mathrm{H}, \mathrm{br} \mathrm{s} \mathrm{OH}),, 4.97(1 \mathrm{H}, \mathrm{t}, J 1.3, \mathrm{CHOH}), 5.19(1 \mathrm{H}, \mathrm{d}, J$ $\left.11.0, \mathrm{CH}=\mathrm{C}^{\mathrm{c}} \mathrm{H}\right), 5.41\left(1 \mathrm{H}, \mathrm{d}, J 17.2, \mathrm{CH}=\mathrm{C} H^{\mathrm{t}} \mathrm{H}\right)$ and $5.84(1$ H , ddd, J 17.2. 11.0 and 1.3, $\mathrm{CH}=$) (Found: $\mathrm{M}^{+}, 301.1882$).
trans- and cis-t-Butyl $\mathrm{N}-[(2,2,5$-trimethyl-4-vinyl-1,3-dioxan-$5-y \cdot l)$ methy $y /]-\mathrm{N}$-methylcarbamate 27 and 28.-By a similar procedure to that described for the preparation of compound 11, the alcohol 25 (or 26) ($426 \mathrm{mg}, 1.4 \mathrm{mmol}$) was reduced with LiBH_{4}-methanol. Work-up as described for the preparation of compound 9 gave the corresponding diol in $35-40 \%$ yield. The diol ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$) was condensed with 2,2 -dimethoxypropane ($3.0 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) and $\mathrm{TsOH}(69 \mathrm{mg}, 0.4 \mathrm{mmol}$). Work-up gave an oil, which was purified by column chromatography [benzene-EtOAc (8:1)] to give the dioxane 27 (93 mg , 77%) or 28 ($95 \mathrm{mg}, 80 \%$).

Compound 27 was an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1685(\mathrm{CO}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 1.09(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.43(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.62(12 \mathrm{H}, \mathrm{s}$, Bu^{t} and 2-Me), $2.88(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.94-3.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ NBoc), 3.48 and 3.94 (each 1 H , each m, 6- H_{2}), $4.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $4-\mathrm{H}), 5.26\left(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right), 5.32(1 \mathrm{H}, \mathrm{d}, J 16.8$, $\left.\mathrm{CH}=\mathrm{C} H^{\mathrm{t}} \mathrm{H}\right)$ and $5.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=) ; \mathrm{m} / \mathrm{z} 300\left(\mathrm{M}^{+}+1\right)$ [Found: $\mathrm{M}^{+}+1$), $300.2173 . \mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{4}$ requires $(\mathrm{M}+1)$, 300.2098].

Compound 28 was an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1685(\mathrm{CO}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right), 1.46(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{Me}), 3.24-3.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} \mathrm{H}_{2} \mathrm{NBoc}\right), 3.50$ and 3.62 (each 1 H , each d, $\left.J 12.0,6-\mathrm{H}_{2}\right), 4.14(1 \mathrm{H}, \mathrm{d}, J 5.8,4-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J$ $\left.8.5, \mathrm{CH}=\mathrm{CH}^{\mathrm{c}} \mathrm{H}\right), 5.27\left(1 \mathrm{H}, \mathrm{d}, J 16.8, \mathrm{CH}=\mathrm{C} H^{\mathrm{H}} \mathrm{H}\right)$ and $5.81(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=$) (Found: M^{+}, 299.2094. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires M , 299.2098).
trans-Ethyl 3,5-Dimethyl-2-oxo-6-vinyl-3,4,5,6-tetrahydro$2 \mathrm{H}-1,3$-oxazine-5-carboxylate 29.-By a similar procedure to that described for the reaction of compound 6a with $\mathbf{M s C l}-$ $E t_{3} \mathrm{~N}$, the crude product which was obtained from the alcohol 25 ($387 \mathrm{mg}, 1.28 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}\left(0.54 \mathrm{~cm}^{3}, 3.84 \mathrm{mmol}\right)$ and MsCl ($0.15 \mathrm{~cm}^{3}, 1.92 \mathrm{mmol}$) was purified by column chromatography [benzene-EtOAc (1:1)] to give the title compound 29 (251 mg , 86%) as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720$ and $1700(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.22(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.0(3 \mathrm{H}, \mathrm{s}$, NMe), $3.08(1 \mathrm{H}, \mathrm{d}, J 12.0,4-\mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and $1.5,4-$ H), $4.22\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 5.02(1 \mathrm{H}, \mathrm{dq}, J 6.0$ and 1.5 , $6-\mathrm{H}), 5.40\left(1 \mathrm{H}, \mathrm{dt}, J 10.5\right.$ and $\left.1.5, \mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right), 5.45(1 \mathrm{H}, \mathrm{dt}, J$
17.1 and $\left.1.5, \mathrm{CH}=\mathrm{C} H^{\prime} \mathrm{H}\right)$ and $5.81(1 \mathrm{H}, \mathrm{ddd}, J 17.1,10.5$ and 6.0 , $\mathrm{CH}=) ; \mathrm{m} / \mathrm{z} 228\left(\mathrm{M}^{+}+1\right)$ [Found: $\left(\mathrm{M}^{+}+1\right), 228.1235$. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires $\left.m / z, 228.1234\right]$.

Ethyl 2-\{[(t-Butoxycarbonyl(methyl)amino]methyl $\}$-2-methyl-3-(methylsulphonyloxy)pent-4-enoate 30.-By a similar procedure to that described for the preparation of compound 7 with $\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}$, the crude product which was obtained from compound $26(387 \mathrm{mg}, 1.28 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}\left(0.54 \mathrm{~cm}^{3}, 3.84\right.$ (mmol), and $\mathrm{MsCl}\left(0.15 \mathrm{~cm}^{3}, 1.92 \mathrm{mmol}\right.$) was purified by column chromatography to give the mesate $30(418 \mathrm{mg}, 79 \%)$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1730$ and $1690(\mathrm{CO})$, and 1365 and 1170 $\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.27(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{\mathrm{t}}\right)$, $1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.81(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.95-3.25(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{NBoc}\right), 3.0\left[3 \mathrm{H}, \mathrm{s}, \mathrm{S}(\mathrm{O})_{2} \mathrm{Me}\right], 4.20(2 \mathrm{H}, \mathrm{q}, J 7.4$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSO}_{2}\right), 5.12(1 \mathrm{H}, \mathrm{d}, J$ $\left.\mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right), 5.35\left(1 \mathrm{H}, \mathrm{d}, J 16.8, \mathrm{CH}=\mathrm{C}^{\mathrm{\prime}} \mathrm{H}\right)$ and $5.84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=$) (Found: $\mathrm{M}^{+}, 379.1661 . \mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}$ requires M , 379.1663).
cis-Ethyl 3,5-Dimethyl-2-oxo-6-vinyl-3,4,5,6-tetrahydro-2H-1,3-oxazine-5-carboxylate 31.-After the mesate $\mathbf{3 0}$ ($418 \mathrm{mg}, 1.1$ mmol) was stored for 3 days, the oily material was purified by column chromatography [benzene-EtOAc (1:1)] to give the title compound 31 ($186 \mathrm{mg}, 82 \%$) as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1730$ and $1710(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.39$ ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $3.0(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.06(1 \mathrm{H}, \mathrm{d}, J 12.0,4-\mathrm{H}), 3.62(1$ $\mathrm{H}, \mathrm{d}, J 12.0,4-\mathrm{H}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.66(1 \mathrm{H}, \mathrm{dt}$, $J 6.0$ and $1.4,6-\mathrm{H}), 5.36\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.1.4, \mathrm{CH}=\mathrm{C} H^{\mathrm{c}} \mathrm{H}\right)$, $5.39\left(1 \mathrm{H}, \mathrm{dd}, J 17.0\right.$ and $\left.1.4, \mathrm{CH}=\mathrm{CH}^{\prime} \mathrm{H}\right)$ and $5.85(1 \mathrm{H}$, ddd, J 17.0, 10.5 and 6.0, $\mathrm{CH}=$) (Found: $\mathrm{M}^{+}, 227.1168 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{M}, 227.1158$).

References

1 T. Kurihara, T. Terada, S. Harusawa and R. Yoneda, Chem. Pharm. Bull., 1987, 35, 4793.
2 T. Kurihara, T. Terada, Y. Matsubara and R. Yoneda, Heterocycles, 1987, 26, 641; Y. Matsubara, R. Yoneda, S. Harusawa and T. Kurihara, Heterocycles, 1988, 27, 667.
3 G. Fodor, R. E. Reavill, J. Stefanovsky, B. Kurtev and H. J. Bernstein, Tetrahedron, 1966, 22, 235; G. Stajer, E. A. Szabo, F. Fulop and G. Bernath, Tetrahedron, 1983, 39, 1829; A. Bongini, G. Cardillo, M. Orena, G. Porzi and S. Sandri, Chem. Lett., 1988, 87.
4 T. H. Chan, A. Aida, P. W. Lan, V. Gorys and D. N. Harpp, Tetrahedron Lett., 1979, 4029.
5 D. A. Evans and L. R. Macgee, Tetrahedron Lett., 1980, 21, 3975.
6 K. Soal and A. Ookawa, J. Org. Chem., 1986, 51, 4000.
7 S. Kano, T. Yokomatsu, H. Iwasawa and S. Shibuya, Tetrahedron Lett., 1988, 27, 6331.
8 T. Kurihara, T. Terada, S. Satoda and R. Yoneda, Chem. Pharm. Bull., 1986, 34, 2786.

Paper 1/02613E
Received 31st May 1991
Accepted 15th August 1991

[^0]: + Refluxing of compound $\mathbf{6 a}$ with $\mathrm{Et}_{3} \mathrm{~N}$ in methylene dichloride did not give the 1,3 -oxazine 7 a.
 \ddagger Compound 8a was recovered unchanged after being refluxed with $\mathrm{Et}_{3} \mathrm{~N}$ hydrochloride in methylene dichloride.

